Adaptive and Incremental Processing for Distance Join Queries
نویسندگان
چکیده
A spatial distance join is a relatively new type of operation introduced for spatial and multimedia database applications. Additional requirements for ranking and stopping cardinality are often combined with the spatial distance join in on-line query processing or internet search environments. These requirements pose new challenges as well as opportunities for more efficient processing of spatial distance join queries. In this paper, we first present an efficient k-distance join algorithm that uses spatial indexes such as R-trees. Bi-directional node expansion and plane-sweeping techniques are used for fast pruning of distant pairs, and the plane-sweeping is further optimized by novel strategies for selecting a sweeping axis and direction. Furthermore, we propose adaptive multi-stage algorithms for k-distance join and incremental distance join operations. Our performance study shows that the proposed adaptive multistage algorithms outperform previous work by up to an order of magnitude for both k-distance join and incremental distance join queries, under various operational conditions. keywords: spatial databases, k distance join, incremental distance join, adaptive query processing, multistage query processing, plane sweeping, sweeping index, estimating cutoff distance.
منابع مشابه
Processing Sliding Window Multi-Joins in Continuous Queries over Data Streams
We study sliding window multi-join processing in continuous queries over data streams. Several algorithms are reported for performing continuous, incremental joins, under the assumption that all the sliding windows fit in main memory. The algorithms include multiway incremental nested loop joins (NLJs) and multi-way incremental hash joins. We also propose join ordering heuristics to minimize th...
متن کاملDistributed Incremental Least Mean-Square for Parameter Estimation using Heterogeneous Adaptive Networks in Unreliable Measurements
Adaptive networks include a set of nodes with adaptation and learning abilities for modeling various types of self-organized and complex activities encountered in the real world. This paper presents the effect of heterogeneously distributed incremental LMS algorithm with ideal links on the quality of unknown parameter estimation. In heterogeneous adaptive networks, a fraction of the nodes, defi...
متن کاملHigh-dimensional kNN joins with incremental updates
The k Nearest Neighbor (kNN) join operation associates each data object in one data set with its k nearest neighbors from the same or a different data set. The kNN join on high-dimensional data (high-dimensional kNN join) is an especially expensive operation. Existing high-dimensional kNN join algorithms were designed for static data sets and therefore cannot handle updates efficiently. In this...
متن کاملDistributed Approach to Continuous Queries with kNN Join Processing in Spatial Telemetric Data Warehouse
This chapter describes realization of distributed approach to continuous queries with kNN join processing in the spatial telemetric data warehouse. Due to dispersion of the developed system, new structural members were distinguished: the mobile object simulator, the kNN join processing service, and the query manager. Distributed tasks communicate using JAVA RMI methods. The kNN queries (k Neare...
متن کاملOptimizing Multiple Continuous Queries
Emerging data stream processing applications present new challenges that are not addressed by traditional DBMS technologies. To provide practical solutions for matching highly dynamic data streams with multiple long-lived and dynamically-updated continuous queries, a stream processing system should support incremental evaluation over new data, query optimization for continuous queries including...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IEEE Trans. Knowl. Data Eng.
دوره 15 شماره
صفحات -
تاریخ انتشار 2003